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The hydrodynamics of the process in bubble-type reactors in the presence of external potential fields are
examined for the case of "slow" bubbling characterized by high weight levels of the two-phase layer and
low reduced gas velocities. Equations are obtained for the gas content and specific phase contact surface.

The use of external potential fields makes it possible to intensify chemical engineering processes, modify
their motive force and reduce the scale of existing apparatus (in the case of bubbling equipment this is achieved by
reducing the theoretical plate number), which considerably reduces thermal losses.

We examine the question of the hydrodynamics of the process in bubble-type reactors in the presence of external
potential fields for "slow" bubbling characterized by large weight levels of the two-phase layer and small reduced gas
velocities (Fp « 1) [1]. To determine the gas content in this regime, it is necessary to calculate the size of the bubble
in the bubble layer.

It is known [2] that the dynamic interaction of a liquid and a bubbled gas leads to the breakdown and coalescence
of gas bubbles, as a result of which energetically more stable bubbles are formed in the bubble layer. The bubble
radius can be determined using the equation of relative motion [3]
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As necessary, by varying the external potential field, we can change both the absolute magnitude and the
direction of the quantity g;. We perform the calculations for a binary mixture, one of whose components has magnetic
susceptibility, in the presence of a nonuniform magnetic field. Then,
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We make the following assumptions. Since the density of the gas bubbled into the liquid is three orders less than
the density of the liquid itself, we may assume that p, = 0. Assuming that the motion is steady and stabilized, we
obtain dUX/dT = 0. Multiplying (1) by dx and integrating from 0 to x, we obtain the energy equation for a single bubble
in a layer of thickness x. Varying it with respect to r for r(x) = ry, and equating the variation to zero, starting from
the minimum energy condition, we obtain
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In deriving (3) we disregarded the energy expended on the formation of the bubble surface and made the
substitution
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It has been established that in mass bubbling the equivalent bubble radius is determined by the physical
properties of the medium and over a broad range of gas loads is practically independent of the diameter of the gas-
distributing openings or the free cross section of the distributor. The rate at which the bubbles rise is calculated
from a formula obtained on the assumption that in our case the flow picture is the same as for a spherical bubble [6]:
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where o = 127.

Substituting the value of Uy from (4) into (3), we can find the mean bubble radius in the bubble layer as a function
of the bubble layer parameters.

We now turn to the determination of the gas content of the layer ¢ and the energy balance. The energy balance
for an element of height 0x is determined as follows:

dE, = dE{ - dE, - dE,. (5)
The quantities dE; and dE, are found from the equations
dE; = (1 — @) p1gxdx, (6)

2
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Since the gas flow is continuous, the gas content at the gas-liquid mixture/gas interface is equal to unity [4].
Accordingly, we write

oU,=U. (8)

The volume of the layer element occupied by the gas phase (gas content) is
4
= —nrin. (9)
73

Using (8) and (9), we can represent Eq. (7) in the form

£ 2
dE, = 3 P xdx. (10)
8 ro
The surface tension energy
dE, = 4 o’ ndx — 22— qdr. (1)
r

Instead of ¢' we introduce the mean value {oy,) of the surface tension

Ot Omax (12)
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2

Equation (12) gives the exact value in the case of a linear dependence of the surface tension on the coordinate. In
other cases, it is still possible to use the same formula, since the error is not great owing to the fact that the bubble
layers are relatively small.

With these transformations and assumptions, Eq. (5) for the total energy of a two-phase layer of height x; takes
the form

E=§ [(1—¢)plgx+3/8 g"rl:z x4 3:“ tp}dx. (13)
0

In this equation the kinetic energy of the two-phase layer has not been taken into account, since it is three orders
smaller than the dissipative energy [6].

The equilibrium distribution of the gas content ¢ corresponds to the case when the energy integral of the layer
has a minimum. Using the Lagrange multiplier A, we vary (13), as a result of which we obtain a functional L in ¢ [8].
Then, neglecting the variation of x, from (13) we obtain
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Taking into account the condition that the amount of liquid in the apparatus is fixed, we can determine the height
of the two-phase layer x;, using the expression for ¢ from {(14):

s, 3 gp, UPx (15)
H= I—1 Y dx. 15
0 \ v r ¥

The Lagrange multiplier A is determined from Eq. (14) using the condition ¢{x) = 1. In the general case, in
accordance with (3) and (2), which enter into {15), r and g are functions of the x-coordinate and the concentration of
the component possessing magnetic susceptibility ci(x). Consequently, in the final analysis quadrature (15) is

determined by the form of ¢;(x), which follows from the equation after substitution of the corresponding values of
r(ci(x), x) and glecy(x), x):
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We consider the simple case when c¢;{(x) can be written in the form
¢ (%) = Cmin (1 4 a %), (17)
the quantity c; (x)|x—o = cmix being sufficiently small.
After all the necessary transformations, for the height of the two-phase layer and the gas content we obtain

HVEp U +086% 4 0.8635 — 0.375H
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Even for more general cases of writing ¢;(x) it is impossible to isolate x; in explicit form. To make an analysis
of Eq. (15), we assume that the bubble radius is constant, but less than in the absence of an external field, and also

that the acceleration is constant, i.e., the radius takes the mean value (ry,). Then, after integration, Eq. (15) takes
the form
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From (14) with ¢(x4) = 1 there follows
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Thus, the height of the dynamic two-phase layer and the mean gas content are, respectively,
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An analysis of (21) shows that the height of the dynamic two-phase layer increases when external potential fields
are applied and, consequently, the mean gas content of the two-phase layer also increases (22).

For gas velocities up to 0.1 m/sec the resistance coefficient is calculated from the formula [7]

E= 0.82[ é’;’; ]“4 Re. 23)

At U >0.1 m/sec it is not possible to use Eq. (23) and the values of £ are taken from a graph based on the
experimental data on mass bubbling [8].

Using (3) and (22) to calculate the mean bubble radius r, and the mean gas content of the layer ¢y, we
determine the specific phase contact surface

NOTATION

py and p, are the densities of the liquid and the bubbled gas, respectively; V is the bubble volume; § is the
coefficient of résistance to the relative motion of the bubble; Uy is the rate of ascent of the bubble in the layer; Q is
the midsection of the bubble; € is the entrainment factor (for spherical bubbles, € = 0.5); T is the time; g is the
acceleration of gravity; g, is the acceleration due to the external potential field; g is the resultant acceleration; R is
the universal gas constant; v is the specific volume of the gas; T is the temperature of the mixture, °K; Uy is the
mean rate of ascent of the bubble in the bubble zone; cy(x) is the concentration of the component possessing magnetic
susceptibility; y, is its magnetic susceptibility for the pure substance; H is the magnetic field strength; y is the
dynamic viscosity of the liquid; E is the total energy of the layer; E; is the potential energy of the liquid; E; is the
dissipative energy of layer; E; is the surface tension energy; n is the number of bubbles in the layer; U is the gas
velocity at the gas-liquid mixture/gas interface; o’ is the surface tension as a function of the external potential field;
o is the surface tension in the absence of the field;, oy 5y is the surface tension in the region with maximum field
strength; v is the specific weight; Vy is the volume of the two-phase layer, V¢ = V/p; S is the bubble surface; q¢ is a
conversion factor equal to 9.81.
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