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The hydrodynamics of the process in bubble-type reactors in the presence of external potential fields are 

examined for the case of "slow" bubbling characterized by high weight levels of the two-phase layer and 
low reduced gas velocities. Equations are obtained for the gas content and specific phase contact surface. 

The use of external potential fields makes it possible to intensify chemical engineering processes, modify 
their motive force and reduce the scale of existing apparatus (in the case of bubbling equipment this is achieved by 
reducing the theoretical plate number), which considerably reduces thermal losses. 

We examine the question of the hydrodynamics of the process in bubble-type reactors in the presence of external 
potential fields for "slow" bubbling characterized by large weight levels of the two-phase layer and small reduced gas 

velocities (F r << i) [i]. To determine the gas content in this regime, it is necessary to calculate the size of the bubble 
in the bubble layer. 

It is known [2] that the dynamic interaction of a liquid and a bubbled gas leads to the breakdown and coalescence 

of gas bubbles, as a result of which energetically more stable bubbles are formed in the bubble layer. The bubble 
radius can be determined using the equation of relative motion [3] 

dUx 
g ( ~  - -  ~ )  v - -  ~ ~ n - -  ( ~  - ep,) v ~ -  = o.  (1) 

As necessary, by varying the external potential field, we can change both the absolute magnitude and the 

direction of the quantity g2. We perform the Calculations for a binary mixture, one of whose components has magnetic 
susceptibility, in the presence of a nonuniform magnetic field. Then, 

Zo 0 H~" 
g2 = cl (x) P~ Ox (2) 

We make the following assumptions. Since the density of the gas bubbled into the liquid is three orders less than 
the density of the liquid itself, we may assume that P2 ~ 0. Assuming that the motion is steady and stabilized, we 
obtain dUx/d~- = 0. Multiplying (i) by dx and integrating from 0 to x, we obtain the energy equation for a single bubble 
in a layer of thickness x. Varying it with respect to r for r(x) = r m and equating the variation to zero, starting from 
the minimum energy condition, we obtain 

@i Ugx (3) 
rm = R T  

p~ g l x  + - c, (x) 

In deriving (3) we disregarded the energy expended on the formation of the bubble surface and made the 
subs titution 

OH 2 R T  
f c~ (x) Xo dx  = c, (x). 

Ox v 

It has been established that in mass bubbling the equivalent bubble radius is determined by the physical 
properties of the medium and over a broad range of gas loads is practically independent of the diameter of the gas- 
distributing openings or the free cross section of the distributor. The rate at which the bubbles rise is calculated 

from a formula obtained on the assumption that in our case the flow picture is the same as for a spherical bubble [6]: 
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OH 2 ,, 7 I/5 \( ~--rr's ]40"2~ ]1/5 = k[ a,p,4~ g''k-, c,(X)p, Z o - ~ X  )] ' (4) Uo 

where a = 12~. 

Substi tuting the value of U 0 f rom (4) into (3), we can find the mean bubble radius  in the bubble layer  as a function 
of the bubble layer  pa rame te r s .  

We now turn  to the de te rmina t ion  of the gas content of the layer  ~0 and the energy balance. The energy balance 
for an e lement  of height 0x is de termined as follows: 

dEx = dE1 q- dE.. -ff dE3. (5) 

The quanti t ies  dE1 and dE 2 are found from the equations 

dE1 = (1 - -  rp) 91 gxdx, (6) 

dE2 = ~ ~ r"-nxdx. (7) 

Since the gas flow is continuous,  the gas content at the gas- l iquid  mixture /gas  interface is equal to unity [4]. 
Accordingly,  we write 

qo Uo = U. (8) 

The volume of the layer  c lement  occupied by the gas phase (gas content) is 

~ =  4 n r 3 n .  (9) 
3 

Using (8) and (9), we can r ep re sen t  Eq. (7) in the form 

dE2-- 3 ~01U2 xdx. (10) 
8 rcp 

The surface tension energy 

3~ t 
d E s = 4 ~  P 0 , ' n d x ~  ~ dx. (11) 

r 

Instead of a' we introduce the mean  value (~m) of the surface tension 

0,m -- (T -~- 0,max (12) 
2 

Equation (12) gives the exact value in the case of a linear dependence of the surface tension on the coordinate. In 

other cases, it is still possible to use the same formula, since the error is not great owing to the fact that the bubble 

layers are relatively small. 

With these transformations and assumptions, Eq. (5) for the total energy of a two-phase layer of height x I takes 

the form 

xl 
x +  - r d x .  (18) 

r(p r 0 

In this equation the kinetic energy of the two-phase layer has not been taken into account, since it is three orders 

smaller than the dissipative energy [6]. 

The equilibrium distribution of the gas content ~ corresponds to the case when the energy integral of the layer 

has a minimum. Using the Lagrange multiplier X, we vary (13), as a result of which we obtain a functional L in ~ [8]. 

Then, neglecting the variation of x, from (13) we obtain 
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(3 ( ) <141 
q~ = 8 -  r 3 ~ m  P l  g l  X - -  ~ '  " 

I" 

Taking into account the condition that the amount of liquid in the apparatus is fixed, we can determine the height 

of the two-phase layer x I, using the expression for qo from (14): 

i - -  dx. H 1 8 -  ~'~m 
\ ?" , 

(15) 

The Lagrange  mul t ip l i e r  X is de t e rmined  f rom Eq. (14) using the condit ion q)(x) = 1. In the genera l  case ,  in 
acco rdance  with (3) and (2), which enter  into (15), r and g a r e  s of the x -coo rd ina t e  and the concent ra t ion  of 
the component  p o s s e s s i n g  magnet ie  suscep t ib i l i ty  el(x). Consequently,  in the final ana lys i s  quadra tu re  (15) is 
de t e rmined  by the fo rm of Cl(x), which follows f rom the equation af te r  subst i tut ion of the co r r e spond ing  values  of 
r(ct(x) ,  x) and g(el(x), x): 

;[ ( ] 3 ~Pl U~x 

n : 1 - 8 ~,o, u e'- oi e l  + p,_T ac~(x)~ d~. 
3~ - -  v Ox ] _ _  L~9~ U~x 

P lg tx  + R T  cl(x) 9 t g l x  + R T  c~(x) 
0 U 

We consider the simple case when el(x) can be written in the form 

(16) 

cl (x) = Cmin (1 + C~ X), (17) 

the quant i ty  cl (x)]x=o = Cmin being suff ic ient ly  smal l .  

After all the necessary transformations, for the height of the two-phase layer and the gas content we obtain 

H V~pl U 2 + 0.8635 0.8635 -- 0.375H 
xl = and (Pro = (18) 

/ ~91U 2 + 0.375 H I, ~Pl U ~ + 0.8635 

Even for more general cases of writing Cl(X) it is impossible to isolate x I in explicit form. To make an analysis 

of Eq. (15), we assume that the bubble radius is constant, but less than in the absence of an external field, and also 

that the acceleration is constant, i.e. , the radius takes the mean value (rm). Then, after integration, Eq. (15) takes 

the form 

H :  x + 2g ] / r ~  rm - 

r% ( ) U 3O'm ~, 1 
4 r ~ - -  .. (p~g)~/~ X 

r 

_ _ _  2 9 1  g 
, r m  . /  

F r o m  (14) with ~p(x l) = 1 there  follows 

3~ - -p~gx~  - )~ = |S/-3 ~P~ U2x~ , 

l" m r m 

3~m ) ~ : 9 1 g x l +  3 ~pIU2xl 
r m 8 r m 

Thus, the height of the dynamic two-phase layer and the mean gas content are, respectively, 

(20) 
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Xl ~ H 

U2 

1 +  3 ~ U 2 l f - ~  ~ z -  U ( 1 - ~ - V ~ -  4gr ) 

2 4grm X - -  arcsin (21) 
2 I t  3~ U ~ ' 

2 4gr m 

q),~ = 1 - -  ~ (22) 
X1 

An analysis  of (21) shows that the height of the dynamic two-phase layer  i nc reases  when external  potent ial  f ields 
a re  applied and, consequently,  the mean gas content of the two-phase l aye r  also i nc rea se s  (22). 

Fo r  gas ve loc i t i es  up to 0.1 m/ sec  the r e s i s t a n c e  coeff ic ient  is calculated f rom the formula  [7] 

v g~4 71/4 
: L ( 2 3 )  

At U >0.1 m/ sec  it is not poss ib le  to use Eq. (23) and the values of ~ a re  taken f rom a graph based on the 
exper imenta l  data on m a s s  bubbling [8]. 

Using (3) and (22) to calcula te  the mean bubble radius  r m and the mean gas content of the l ayer  ~m,  we 
de te rmine  the speci f ic  phase contact  su r face  

S 
a = �9 (24) 

Vt 

N O T A T I O N  

Pl and Pz a re  the dens i t i es  of the liquid and the bubbled gas, r espec t ive ly ;  V is the bubble volume; ~ is the 
coeff ic ient  of r e s i s t ance  to the r e l a t ive  motion of the bubble; U x is the ra te  of ascent  of the bubble in the layer;  ~2 is 
the midsec t ion  of the bubble; e is the en t ra inment  factor  (for spher ica l  bubbles, e = 0.5); ~- is the time; gi is the 
acce le ra t ion  of gravity;  g2 is the acce le ra t ion  due to the externa l  potential  field; g is the resul tan t  accelera t ion;  R is 
the un iversa l  gas constant;  v is the specif ic  volume of the gas; T is the t empe ra tu r e  of the mix ture ,  ~ U0 is the 
mean ra te  of ascent  of the bubble in the bubble zone; cl(x) is the concentra t ion of the component pos se s s ing  magnet ic  
suscept ibi l i ty;  • is i ts magnet ic  suscept ibi l i ty  for  the pure substance; H is the magnet ic  field strength; p is the 
dynamic v i scos i ty  of the liquid; E is the total energy of the layer ;  El is the potential  energy of the liquid; E 2 is the 
d iss ipa t ive  energy  of layer;  E 3 is the sur face  tension energy; n is the number  of bubbles in the layer;  U is the gas 
veloci ty  at the gas - l iqu id  mix tu re /gas  interface;  a' is the sur face  tension as a function of the externa l  potential  field; 

is the surface  tension in the absence of the field; C~ma x is the sur face  tension in the region with maximum field 
strength;  T is the specif ic  weight; V t is the volume of the two-phase layer ,  V t = V/~t; S is the bubble surface;  qc is a 
convers ion  factor  equal to 9.81. 
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